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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1601

CHARACTERISTICS OF THIN TRIANGULAR WINGS WITH CONSTANT-CHORD
FULL-SPAN CONTROL SURFACES AT SUPERSONIC SPEEDS

By Warren A. Tucker
SUMMARY

A theoretical analysis was made of the characteristics of constant-
chord full-span control surfaces on thin triangular wings at supersonic
speeds by use of methods based on the linearized equation for supersonic
flow. BExpressions were found for the 1ift effectiveness, pitching-moment
coefficient, hings-moment coefficient due to control deflection, and
hinge-moment coefficient dus to angle of attack. These expresslons were
given as functions of the ratio of flap chord to wing chord and the ratio
of the tangent of the wing-semiapex angle to the tangent of the Mach angle.

High values were found for the 1lift effectiveness, defined as the
ratio of the 1ift ccoefficient produced by a unit flap deflection to the
1ift coefficient produced by a unit angle of attack of the wing. TFor
certain combinations of flap size, wing-apex angle, and Mach number, the
1ift produced by a unit flap deflection was actually greater than the
1ift resulting from a unit angle of attack of the entire wing. These
high values of 1lift effectiveness were the result of the low lift-curve
slope of the wing rather than of any remarkable lift-producing capability
on the part of the flap.

When the ratio of 1lift effectiveness to hinge-moment coefficient due
to control deflection was compared with the corresponding ratio for a
two-dimensional wing-flap combination having the same ratio of flap area
to wing area, the present arrangement was slightly inferior to the two-
dimensional case when the Mach lines were behind the leading edge. As
the Mach lines moved ahead of the leading edge, the efficiency of the
present arrangement reached and exceeded that of the two-dimensional
combination. '

INTRODUCTION

A variety of control-surface arrangements has bsen suggested for use
on triangular wings at supersonic speeds. Some of the more obvious are
the triangular-tip flap (reference l), the constant-percent-chord flap,
and the consgtant-chord flap. OFf these various control-surface types,
perhaps the simplest is the familiar constant-chord full-span trailing-
edge flap.
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The characteristics of this type of control surface are, analyzed in
the present paper by use of methods based on the linearized equation for
supersonic flow. Simple expressions are obtained for the 1ift effective-
ness, pitching-moment coefficient, hinge-moment coefficient due to con-
trol deflection, and hinge-moment coefficient due to angle of attack.

The results, having been found by methods based on the linearized
equation, are valid only for small control-surface deflections and angles
of attack.

1l -m

)

SYMBOLS

maximum wing span
wing root chord

wing local chord

wing mean aerodynamic chord
flap chord

0
2 °f3
flap root-mean-square chord cf2 s
c

1ift coefficient <Li§€>
g

pitching-moment coefficient about wing asrodynamic center
<Pitching moment)
gsSc

hinge-moment coefficient H
ab Ef 2

lifting pressure coefficient <%>

complete elliptic integral of second kind with modulus

dl - m?

flap hinge moment

free-stream Mach number
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tan €
n=
tan M
P 1lifting pressure on flap
pV2
q free-stream dynamic pressure —E_
S wing area <%§>
Se flap area
v freeo-stream velocity
X,y Cartesian coordinates parallel and normal, respectively, to free-
gstream direction
Xcp distance behind wing apex of center of pressure of 1lift resulting
from flap deflection :

o angle of attack

Ly
ag 1lift effectiveness | —

Cly,
B = M2 -1
o angle of flap deflection
€ ‘ wing-gsemiapex angle
M Mach angle <£an'l %)
y =BT y/x

X tan M

o) free-stream density
) disturbance-velocity potential

¢x disturbance velocity in x-direction
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Subscripts:

a partial derivative of coefficlient with respect to «
example: C = —=
P o = 34

5 partial derivative of coefficient with respect to & (except
when used in ap)

Cy, partial derivative of coefficient with respéct“to C1,
00 two-dimensional case

All angles are in radians, unless otherwise specified.

ANATYSTS

Lift Effectiveness

The control-surface configuration under investigation is shown in
figure 1. In calculating the 1ift caused by a flap deflection o, the
angle of attack o - may be assumed to be zero. The deflected. flap may
then conveniently be regarded as a trapezoidal wing at an angle of attack
equal to 8. Two regions of flow are distinguished in determining the
lift. (See fig. 2.) In region Sy, the pressure ls constant and equal
to the pressure on a wing of infinite gpan. In each of the regions STT

the effect of the finite tip must be considered. '

The pressure in regions Sy7 may be calculated by a powerful method

developed by Evvard (reference 2). Figure 3 shows the notation used in
reference 2. The equations of the leading edge and the tip are defined
in reference 2 in terms of an oblique u,v-coordinate system whose txes
are the Mach lines originating at the tip. For the present case, the
values of ky and ko (fig. 3) become - ’ '

ky =1 -
(1)
1+ B tan ¢

kn =
2778 tan ¢

The velocity potential at a point (x,y) on one surface is given by
equation (20) of reference 2 for a wing having a wedge-sheped section.
As pointed out in reference 2, only the second term (which is independent
of the airfoil section) contributes to the lift due to angle of attack.
Ths potential at a point (X,y) on one gide of the surface for the

Pregent case is thus given by
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vo | (kg + k) (x + B3) [(Xp - 1)x - (kp + 1)By|
B kp?

(1 +x)x+ (L-k)By o [y [(lp - 1)x - (kp + 1)BY]
+ - tan” (2)

Jii (ky + kp)(x + BY)

where k; and k, have the values noted in equation (1).

In order to obtain an expression for the pressure, the disturbance-
velocity component ¢x on which the pressure is dependent is obtained by

differentiéting equation (2) with respect to x. The differentiation
ylelds

. By By
ovs [ B ten ¢ 1+ 5 o (P encE -y
Px = M |1+ p tan € B + e B
Bta.né.._x l+__b.r.
X X
For convenlence write
m=p tan €
wvhere 0Sm<1 end
- gL
v =B (3)

where -1< v <m. When m =1, the Mach line lies along the wing tip;

when m = O, the tip is rectangular (for Mach numbers greater than unity).
The value V = m defines the wing tip; the value V = -1 defines the
tip Mach line lying on the flap. The equation for QX then becomes

_ 2Vo m ’l + Vv -1 m_j:;
¢X_1r[3 <l+m m_v+tan J;+v> (h’)
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By defining a pressure coefficient as

where P is the lifting pressure on the flap,
N
Cp = §¢x

or

;’gﬁ m 14V -1 m-vV =
CP—nB<l+m\}m-v+tan \/l+v’> ' (5)

Values of CPB/6 are shown in figure 4 for several values of m.

When m = O, equation (5) correctly gives the pressure distribution over
the tip of a rectangular wing as found by other investigators.

With the pressure known at all points, determination of the lift
coefficient per unit flap deflection is now possible. The derivation is
carried out for the case shown in figure 2, where the Mach lines do not
intersect each other. As is pointed out subsequently, the result obtained
is also valid when the Mach lines intersect, so long as the Mach line from
one tip doss not cross the opposite tip. The 1ift on one tip is

2 m
Cr
Lt = 4 CP ds = EE'q CP av
STT -1
or
m : m
)-4'02 Vv

LII= £ m 14V oL, con~L (R gy
gd ﬂBQ l+m m- v 1+

-1 -1
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The integrals may be evaluated with the aild of equation (111), (161),
and (169) of reference 3 and the result is

= —(3m + 1)

s
gd 2

2
Cr
B
The pressure‘coefficient in the region $S; has the two-dimensional

value 48/, and the area Sy can be shown to be

Cal
T
81 = bep - —E-(l + 2m)

so that
Iy op”
?ig='ab0f-—5-(l+2m)

If the 1ift coefficient is based on the total wing area bc/2, then the
lift coefficient per unit flap deflection is

Substituting the expressions for LI/q6 and LII/q5 results in

-3 - (0]

c
The case c—f = 1 represents a complete triangular wing, and

when m = 1 equation (6a) correctly gives the lift-curve slope as found
by other investigators (references 4 and 5). However, when m is dif-
ferent from 1, equation (6a) doss not give the values found in references 4
and 5. An examination of the range of applicability is thus in order.

Equation (2) is noted to be valid only for O <m <1 (Mach lines
ahead of the leading edge), so that equation (6a) should not be expected
to hold for m > 1. A further restriction is necessary for m < 1.
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Equation (6a) was derived for the case where the Mach line from one tip :
does not meet the Mach line from the other tip. The case where the Mach
lines intersect has besen examined, and equation (6a) has been found to
apply also to this case so long as the Mach line from one tip does not
cross the opposite tip. This situation is similar to that arising in
the case of the 1lift of a rectangular wing. (Sse reference 6, for
example.) For the present configuration, the limiting conditlion corre-
Cp 2m
gponds to E—-g T  The range of applicability for m <1 1is shown
in figure 5. The same range is also applicable to the results for
pitching moment and hinge moment due to control deflection to be found
subsequently. The restriction will be found unnecessary in the case of
hinge moment due to angle of attack.

For the cases when m > 1 (Mach lines behind the leading edge),
use may be made of an analysis in reference 5 which shows that the 1lif?t
coefficient and center of pressure are the same ag if the flap were
subject to the uniform lift distribution of an infinite span airfoil. ’
(Note the similarity of this case to that of a triangular wing with the
Mach lines behind the leading edge.) For this case equation (6a) applies
if m is set equal to unity. The quantity in brackets then becomes ths .
flap area ratio Sr/S.

Now that the range in which the results are applicable is known,
the complete equations may be written

Cp . c
-3 e - () ()
B c 2m c
ce/cC
where f/ § m § 1l and
Cr
o . =
c
gl e (e | u St | ,
CLS:— _——<_ T e —— (6(})
B c c B S
whers m.Z 1.
The nondimensional quantity ag is customarily used to express the .

1lift effectiveness of a control surface, which may be regarded as the
ratio of the 1ift coefficient produced by a unit flap deflection to the
1ift coefficient produced by a unit angle of attack of the whole wing.




NACA TN No. 1601 9

In reference 4 an expression has been obtained for the 1lift-curve slope
of a triangular wing for m < 1. Rewriting the expression of reference L
in the notation of the present paper gives”

21nm

)

(72)

where E (Jl - m2> is the complete elliptic integral of the second kind
with modulus dl - m°, For the case m 21, the value of C1, has been

found in reference 7 and is simply

C1a=% (7v)
The 1lift effectiveness is
C
!
Cry,
or
5
g = 2K <\Jl - m2'> 2_C£ ) <l + In> <E_f_’_> (8a)
7m _c 2m c
cefC
where r/ <m<1l and
Cf’ =
o _ L
c
2 o«
cf Cf> Sp
= Lem— - — I - 8
% 20 <c S (8v)
> Cp
where m z l. Values of ag are given in figure 6. At — =1, ag =1

for any value of m because the control surface now comprises the entire
wing. The very high values of af are due more to the low lift-curve

slope of the wing rather than to any particular efficacy on the part of
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the flap. For certain Qombinatioﬁs of cf/c and m, og is greater
than unity; this fact indicates that a unit flap deflection will produce
more lift than a unit angle of attack of the whole wing. . -

A standard of comparison for control-surface arrangements is the
two-dimensional wing-flap combination. For this case, the lift effec-

tiveness is merely
c S.
f> _(=f
B, = <c T <S >w ‘ | | (9)

When the Mach lines are behind the leading edge (m 2 1),

O ‘Sf/S )
%,  (8/8),

so that for equal flap area ratios S§— = 1. A more complete comparison
’ 00

with the two-dimensional case is made in the section entitled "Discussion
and Concluding Remarks."

Pitching Moment

An important parameter in stability and control calculations is the
pitching moment about the wing aerodynamic center resulting from a given
1ift on the flap. If the pitching-moment coefficient is based on the

total wing area and the wing mean asrodynamic chord <§j> gso that

_ Pitching moment _ 3 Pitching moment
m asé 2 aSc

C

‘and if the wing aerodynamic center is noted to be at %C behind the

wing apex, then the pitching moment resulting from 1ift on the flap can
be expressed in coefficient form as
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9 o -3

aSc

d

- 3
CmCL 0 Cy,

2

3
2

Fep 2
c 3

where Xbp ¢ is the distance (expressed as a fraction of the,root chord)
behind the wing apex of the center of pressure of the 1lift resulting from

flap deflection. This distance is found to be

X

2
lom - (3 + 9m)§£ + (1 + 3m)<3£>

P c (10a)
[¢] Cf
iom - (3 + 3m)6—
ce/C
where f/ <m <1l and
Cf - -
oo =
c
2
c c
x 6 - 6-L 4 2<_f>
zp = c - S (10D)
iy
6 - 3=
where m z 1 so that
. Cf Cf 2
bm - (1 + Tm)== + (1 + 3m}{—
Cmgy = - c c (11a)
L Cr :
8m - (2 + zm)c—
ce/C
where f/ § m § 1l and
Cr
o _ .
c
2
c ¢
1 - 235 + <€§
Cmgy, = - = (11p)
2 -z

where m 2 1. Values of 'CmCL are given in figure 7.
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Hinge Momsnt Due to Control Deflection

The hinge-moment coefficlent caused by a unit flap deflection Chg
can be found in the same manner as CmCL if moments are taken about the

hinge line rather than the aerodynamic center. If the hinge-moment
coefficient is based on the maximum flap span b and the square of the
root-meen-square flap chord ~ &f so that

o — (12)

where

then

____Eiliz (132)

— (13D)

where m 2 1. Values of -Ch85/2 are given in figure 8. The values

c .
of . -Ch68/2 for E£ = 1 (shown by circles) are the values of -Chaﬁ/e

c
taken from the next section, since at E£ =1 Cpy must necessarily

equal Chan The value of Ch5 for the two-dimensional case is simply

(k)
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go that the values of -Ch53/2 in figure 8 are also ths values of

Hinge Moment Due to Angle of Attack

An expression for the flap hinge moment resulting from a change in
angle of attack of the wing Cp, may be obtained even more gimply than

the expressions derived previously, since in this case the only knowledge
required is that of the lift-curve slope of a triangular wing, which has
been found by other investigators (references 4, 5, and 7).

The scheme employed is shown in figure 9. If the area of the whole
wing is denoted by 8 and the wing area minusg the flap area by S - Sp,

then the flap hinge moment H can be written as
H= HS - HS—Sf

or

- nass - ) - o(50) (555)

If as before the flap hinge-moment coefficient is based on b6f2 go that

H{qm

C =
ha'. bc_lfg
then
c
-
ChC(,=_CIG
6 -ug

Substituting the expressions for Cr, given by equations (7a) and (7b)
gives
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Cr
3 - =
2 m c :
Chy = - = — (152)
BaE(ﬁ—n@) 3 -2-Z—f
where m.§ 1 and
Cf’
o3 -5
Crg = - 5| —2— - (15m)
3 -2=

where m 2 1. Note that the expression for Cpy for m>1l is
identical to that obtained for Chy for m 2 1 (equation (13b)). This

identity should be true because when the Mach linss are behind the leading
edge sither the 1lift on a triangular wing or the 1ift on the trapezoid
wing considered to represent the flap are the same as if the pressure on
the wing were congstant and had the two-dimensional value.

Values of -ChaB/Q are presented in figure 10. The value of Cp
for the two-dimensional wing-flap combination is

Chy, = - (16)

o0

»l

so that figure 10 is also a plot of Cha/bhaw'

DISCUSSICON AND CONCLUDING REMARKS

Several quantities may be used to evaluate the efficiency of a
control-surface system. One commonly used quantity is the ratio a6/Ch5;

which is an indication of the 1lift resulting from the application of a
glven control force. By use of this ratio, the present control-surface
arrangement can be compared wlth a two-dimensional wing-flap combination
on the basis of equal ratios of flap area to total wing area. The
comparison gives
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and soon exceeds that of the two-dimensional combination for a wide
range of flap area ratios. A large part of this increase results from
the dropping off of the 1lift-curve slope of the triangular wing.

In refsrence 1 the efficiency of a triangular-tip flap on a trian-
gular wing with the Mach lines behind the leading edge was shown to be
equal to that of a two-dimensional wing-flap combination having the same
flap area ratio. $So long as the Mach lines are behind the leading edge,
then, the triangular-tip control surface appears to be superlor to the
constant-chord flap on the basls of “6/Ch6 (although for flap area

ratios less than about 0.5 the difference in efficlencies 1s not con-
siderable). The results of an analysis of the triangular-tip flap with
the Mach lines ahead of the leading edge are not yet available, so that

" a comparison of the constant-chord flap with this perhaps more Iinteresting
case cannot yet be made.

For certain combinations of cp/c and m, the 1ift effectiveness og

is greater than unity. (See fig. 6.) These very high values are more ths
result of the low lift-curve slope of the wing for low values of m
rather than of any remarkable lift-producing capability on the part of

the flap.

Although the parameter m arises naturally in the analysis of tri-
angular wings, expression of control-surface characteristics as direct
functions of the Mach number M 1s often convenient, especlally for
design purposes. Figure 12 shows the variation of control-surface char-
acteristics with Mach number for one particular configuration with ¢ = h5°

c .
and E£ = 0.2. Other such plots can be mede from the equations presented

in this paper or from the figures.

Langley Memorial Aercnautical Laboratory
National Advisory Conmittee for Aerocnautics
Langley Field, Va., March 29, 1948
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Nf

Figure 3.- Notation for the case considered in reference 2.
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Figure 9.- Notation used in derivation of hinge moment due to angle
of attack,
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